
Saraki Documentation
Release 0.1.0a0

José María Domínguez Moreno

Dec 12, 2020

Contents:

1 Quickstart 3
1.1 A Minimal Application . 3
1.2 Protecting endpoints . 4

2 Authorization 7
2.1 How it works . 7
2.2 Authorization rules . 8
2.3 Variable Converters . 9
2.4 Access token . 10

3 Configuration 11

4 API 13
4.1 The Current Account . 13
4.2 Authorization . 13
4.3 Endpoints . 15
4.4 Model . 17
4.5 Utility . 20
4.6 Exceptions . 21

5 History 23
5.1 0.1.0a0 (2018-09-23) . 23

6 Indices and tables 25

Python Module Index 27

Index 29

i

ii

Saraki Documentation, Release 0.1.0a0

Welcome to this documentation. Saraki is a framework for multi-tenant application.

Contents: 1

Saraki Documentation, Release 0.1.0a0

2 Contents:

CHAPTER 1

Quickstart

1.1 A Minimal Application

Since Saraki is just Flask, a basic app looks exactly the same way with the difference that we must use the Saraki class:

from saraki import Saraki
app = Saraki(__name__)
app.config["SQLALCHEMY_DATABASE_URI"] = "postgresql://user:pass@hostname/db"

We haven’t done any special yet. we just created an app instance and set up our database URI, but if we run the
application we are going to get out of the box an API with the next features:

• User signup.

• Multiple organization accounts (tenant) per user.

• Organization members (memberships).

• Role management per organization.

• Authentication and authorization.

Now, let create a Todo class which will store to-do lists for each organization account.

from sqlalchemy import Column, ForeignKey, Integer, String

class Todo(Model):
id = Column(Integer, primary_key=True)
task = Column(String)
org_id = Column(Integer, ForeignKey("org.id"))

This is just another SQLAlchemy declarative base class. The only important thing here is the column org_id. This
column will tell to Saraki that this entity is going to store multi-tenant data.

Now let create a tenant endpoint to access a to-do list per organization account.

3

Saraki Documentation, Release 0.1.0a0

from saraki.auth import require_auth
from saraki.endpoints import collection

@app.route('/orgs/<aud:orgname>/todos')
@require_auth()
@collection()
def list():

return Todo

Let’s talk about what we did in the above code:

1. First, we added a route rule with a special converter aud. This converter will define the tenant accessed in
the current request. So, a request to /orgs/acme/todos means that we are asking for data from the Acme
organization.

2. Then we use the require_auth() decorator, which will validate HTTP requests looking for a valid access
token. This decorator is mandatory for all tenant endpoints since it checks that an access token corresponds to
the organization account accessed.

3. We use the collection() decorator. This will handle operations such as filtering and sorting, but more
importantly, it will ensure that a query to the database is properly segregated by filtering the results by the
column org_id.

4. And finally, we just return the model class to let the collection decorator handle it.

We have not talked about how to insert, update and delete data until now. Each of these operations can be implemented
normally as you would in any other application based on Flask and SQLAlchemy, for example, an endpoint to add
new records would look like this:

from saraki.auth import current_org
from saraki.model import database

@app.route('/orgs/<aud:orgname>/todos', methods=["POST"])
@require_auth()
def add_todo():

todo = Todo()
todo.task = "Stop being lazy"
todo.org_id = current_org.id

database.session.add(todo)
database.session.commit()

return "", 201

When a request is send to a tenant endpoint, the local proxy current_org is available and points to the current
organization being accessed.

1.2 Protecting endpoints

Every application will have one or more endpoints that should not be open to the public. The way we protect an
endpoint from unauthorized access is by requiring a token on each HTTP request.

Use the require_auth() decorator to protect an endpoint.

@app.route('/chat')
@require_auth()

(continues on next page)

4 Chapter 1. Quickstart

Saraki Documentation, Release 0.1.0a0

(continued from previous page)

def hello_world():
return "Messages of this chat"

The above snippet is the most basic way of protecting an endpoint. At the minimum, it will require someone to sigup
first and then get an access token previous authentication. It doesn’t specify any authorization constraint so it won’t
check the scope of the access token in the current request.

To learn how to add authorization constraints read the Authorization documentation.

1.2. Protecting endpoints 5

Saraki Documentation, Release 0.1.0a0

6 Chapter 1. Quickstart

CHAPTER 2

Authorization

Saraki uses an ability based authorization mechanism to determine if a given user can access to an endpoint. This
mechanism is composed of resources, actions, abilities, and roles. On each HTTP request, a client must provide an
access token with enough privileges (abilities) to perform a given action on a given resource.

Before we start with examples and usage information, let define some concepts and terms:

• Resource: It is any unit or group of data accessible through an API. To all the resources we want to be protected
we assign a single name to them.

• Action: An action is any type of operation that can be performed on a resource. We must give a name to the
action or task that an API endpoint performs. Most of the time it will be one of the classic CRUD operations;
create, read, update and delete, but it can be any name, for instance, follow or listen, for a service that propagates
information using WebSockets.

• Ability: The ability to perform an action on a resource. For instance; read products, create products, etc. It is
basically just a resource/action pair. But you can add a name and description to it too.

• Role: A set of one or more abilities. For example, a role Cashier could have the abilities “read payment”, “create
payment” or a role Seller can have the abilities “read product”, “read order”, “update order”, “delete order”. A
user can have various roles assigned to him.

Saraki uses JSON Web Token and stores the privileges that a user has as a member of given organization in the token
payload.

2.1 How it works

Assuming we have an endpoint decorated with require_auth(), the way a request is validated against an endpoint
happens in this way:

1. First, look for a valid access token in the incoming request.

2. Then check if the variable converters match the claims of the current access token.

3. Finally, check if the scope of the token has the required privileges defined in require_auth().

7

Saraki Documentation, Release 0.1.0a0

If any of those steps fail, the application won’t execute the view function and will respond with 401 Unauthorized
status code.

2.2 Authorization rules

The way we define authorization rules on a view function is passing the name of the resource and the action required
to the require_auth() decorator.

The require_auth() decorator plays an important role here because it collects all resources and actions used by
the application to latter save then in the database.

Take into account the next code:

@app.route("/products")
@require_auth("product")
def list_products():

return []

In the above code, we define that a token must contain the product resource explicitly and the action read implic-
itly. By implicitly we mean that if an action name is not provided, the actual route rule HTTP method (GET in this
case) will be mapped to a predefined action (read in this case). So an access token with the next payload would be able
to perform a GET request to the above-defined endpoint.

{
"sub":"coyote",
"scp": {

"product": ["read"]
},

}

Here the list of predefined action/method mapping:

Method Action
GET read
POST write
PATCH write
DELETE delete

Let’s see three more examples to fully understand how this work:

@app.route("/products", method=["POST"])
@require_auth("product")
def add_product():

pass

@app.route("/products/:id", method=["PATCH"])
@require_auth("product", "update")
def update_product():

pass

@app.route("/products:/id", method=["DELETE"])
@require_auth("product")
def delete_product():

pass

8 Chapter 2. Authorization

Saraki Documentation, Release 0.1.0a0

1. The first view function requires an access token with the scope "product": ["write"]. The required
action is write because the method to which the route listen is POST.

2. The second view function passes a custom action name update, so it will require a scope equal to
"product": ["update"]. Note that the required action is update and not write anymore.

3. And the last one requires "product": ["delete"] because the HTTP method is DELETE.

The next access token scope should be able to perform a request to any of the three defined endpoints above:

{
"sub":"coyote",
"scp": {

"product": ["read", "write", "update", "delete"]
},

}

2.3 Variable Converters

Another way of adding authorization constraints are the route rule variable converters. They are very important
because they will help the application segregate the data access between tenant in the database. Currently, there are
two converts:

converter value
sub username. The user account.
aud orgname. The organization account.

When one of those variable converters appears in a route rule, the authorization mechanism will ensure that the current
access token claims match the variable values of the current URL.

Suppose we have a view function with the route rule /users/<sub:username>/activity, and an incoming
request to /users/coyote/activity. For the request to be successful the access token must have the sub claim
with the value coyote.

{"sub":"coyote"}

If the request is successful, the local proxy current_user is available. This object always points to the user
performing the current request.

The aud converter works in exactly the same way, there is no difference. Let’s use both of them in a single route rule:

from saraki.auth import current_org, current_user

@app.route("/orgs/<aud:organame>/members/<sub:username>/activity")
@require_auth()
def index(organame, username):

your code here

In the above code we imported current_org which will point to the current organization being accessed.

A request to /orgs/acme/users/coyote/activity must have a token with the next payload:

{"aud": "acme", "sub":"coyote"}

The local proxies current_org and current_user must be used to ensure that operations to the database are
made on the correct organization and user account. So organizations do not end up reading or modifying data from
other organizations.

2.3. Variable Converters 9

Saraki Documentation, Release 0.1.0a0

2.4 Access token

Currently, the only supported token format is JSON Web Token. You are going to find a lot of documentation about
JWT on the internet, so we are not going to cover the specification here.

There are two types of access token:

1. User access token: This token give access to protected endpoints which aren’t tenant endpoints. It also gives
access to endpoints which handles user-specific data. These type of endpoints usually has the sub converter.

2. Org access token: Gives access to tenant-specific endpoints. Those are endpoints which have the aud converter.

A JSON Token transport key/value pairs as payload. Here a list of important claims that you should be aware of:

• sub: This is the username to which a token belongs. This is always present.

• aud: This is the organization to which this token has access. What this means is that a token that belongs to an
organization can not access endpoints that belong to other organizations.

• scp: This is the scope in which a token can operate. It stores the privileges of a user in a dictionary. The
properties are the resources and the values are a list of actions that can be performed on the resource.

Here a JWT payload that illustrates with the three claims above listed.

{
"aud": "acme",
"sub":"coyote",
"scp": {

"catalog": ["read"],
"sale": ["read", "write", "delete"]

}
}

10 Chapter 2. Authorization

CHAPTER 3

Configuration

The following configuration values are used internally. Some of them can be configured using environment variables.

SECRET_KEY
It is used to cryptographically sign each JSON Web Token. Beside that, it is used to securely sign session
cookies. This is mandatory for the authorization mechanism to work.

This can be setup with the SRK_SECRET_KEY environment variable.

Default: None

SQLALCHEMY_DATABASE_URI
The database URI where this app should connect. This can be setup with the SRK_DATABASE_URI environ-
ment variable. Below an example:

postgresql://coyote:12345@localhost/mydatabase

Default: None

SERVER_NAME
This can be setup with the SRK_SERVER_NAME environment variable.

Default: None

JWT_ALGORITHM
The digital signature algorithm used to sign JWTs. Under the hood, PyJWT is used to generate the tokens, so
read the documentation to see what cryptographic algorithms are available.

Default: 'HS256'

JWT_LEEWAY
Default: timedelta(seconds=10)

JWT_EXPIRATION_DELTA
Defaul: timedelta(seconds=300)

JWT_AUTH_HEADER_PREFIX
The prefix for the Authorization request header. If the value of this header in the current request has a
different prefix the toke will be considered invalid.

11

https://pyjwt.readthedocs.io/en/latest/
https://pyjwt.readthedocs.io/en/latest/algorithms.html#digital-signature-algorithms

Saraki Documentation, Release 0.1.0a0

Default: 'JWT'

JWT_ISSUER
This value is used to setup the iss claim of JSON Web Tokens.

Default to the value of SERVER_NAME, otherwise None.

JWT_REQUIRED_CLAIMS
A list of required claims in a JWT. If one of them is not present, the token will be considered invalid.

Default: ["exp", "iat", "sub"]

12 Chapter 3. Configuration

CHAPTER 4

API

4.1 The Current Account

There are two types of accounts; user accounts and organization accounts, The user making a request and the tenant
being accessed are available throguth current_user and current_org.

saraki.current_user
A local proxy object that points to the user accessing an endpoint in the current request. The value of this object
is an instance of the model class User or None if there is not a user.

saraki.current_org
A local proxy object that points to the tenant being accessed in the current request. The value of this object is
an instance of the model class Org or None if the endpoint is not a tenant endpoint.

Note: current_user and current_org are available only on endpoints decorated with require_auth().

4.2 Authorization

saraki.require_auth(resource=None, action=None, parent_resource=None)
Decorator to restrict view function access only to requests with enough authorization.

A valid request must meet the following conditions:

1. The request header must have the Authorization header with a valid JSON Web Token.

2. The token sub claim must contain a username registered in the application. If aud claim is present the
value must be an orgname also registered in the application.

3. The token scope must have enough privileges to access the view function being accessed.

If the parameter resource is not provided, the token scope won’t be verified.

13

Saraki Documentation, Release 0.1.0a0

The resource parameter locks an endpoint to access tokens that contain that resource or any other parent resource
in their scp claim. Let’s look to at an example to illustrate how this work:

@require_auth("cartoon")
def view_cartoons():

pass

@require_auth("movie", parent_resource="catalog")
def view_movies():

pass

@require_auth("comic")
def view_comics():

pass

And a hyipothetical access token scp claim:

{
"catalog": ["read"],
"cartoon": ["read"]

}

The above access token would be authorized to access to view_cartoons and view_movies but not to
view_comics. In the case of view_cartoons, the resource cartoon is present in the token scope. The
resource movie is not present but catalog which is a parent of it is present, so that’s why view_movies
can be accessed. view_comics is not accessible because neither comic nor a parent of it is present.

The action parameter locks the endpoint to a specific action, for instance, read, create, update, delete, etc. If
this parameter is omitted, the HTTP method of the route endpoint definition will be used:

@app.route('/friends')
@require_auth('private', 'follow')
def endpoint_handler():

pass

@app.route('/friends', methods=['DELETE'])
@require_auth('private')
def endpoint_handler():

pass

The first example above, requires the resource private with follow action like the example below:

{"private": ["follow"]}

The second example:

{"resource": ["delete"]}

The last argument parent_resource is optional. It defines the parent resource of the endpoint. That means
that if an access token has a resource matching the parent resource, but not the required resource, it still pass
the validation. For instance, @require_auth('resource', 'action', parent='parent') will
pass with the next access token:

{"parent": ["action"]}

Whenever a request with an unauthorized access token reaches a locked view function an
AuthorizationError exception is raised.

Parameters

14 Chapter 4. API

Saraki Documentation, Release 0.1.0a0

• resource – The name of the resource

• action – The action that can be performed on the resource.

• parent_resource – The parent resource.

4.3 Endpoints

saraki.endpoints.json(func)
Decorator for view functions to return JSON responses.

When the incoming request is a POST request, it validates the content_type and payload before calling the view
function. Next, the returned value of the view function is transformed into a JSON response.

The view function can return the response payload, status code and headers in various forms:

1. A single object. Can be any JSON serializable object, a Flask Response object, or a SQLAlchemy model:

return {}

return make_response(...) # custom Response

return Mode.query.filter_by(prop=prop).first() # SQLAlchemy model instance

return []

return "string response"

2. A tuple in the form (payload, status, headers), or (payload, headers). The payload can be any python
built-in type, or a SQLAlchemy based model object.:

payload, status

return {}, 201

return [], 201

return '...', 400

payload, status, headers

return {}, 201, {'X-Header': 'content'}

payload, headers

return {}, {'X-Header': 'content'}

saraki.endpoints.collection(default_limit=30, max_limit=100)
Decorator to handle collection endpoints. This is an instance of Collection so head on to that class to learn
more how to use it.

saraki.endpoints.add_resource(app, modelcls, base_url=None, ident=None, methods=None, se-
cure=True, resource_name=None, parent_resource=None)

Registers a resource and generates API endpoints to interact with it.

The first parameter can be a Flask app or a Blueprint instance where routes rules will be registered. The second
parameter is a SQLAlchemy model class.

Let start with a code example:

4.3. Endpoints 15

Saraki Documentation, Release 0.1.0a0

class Product(Model):
__tablename__ = 'product'

id = Column(Integer, primary_key=True)
name = Column(String)

add_resource(Product, app)

The above code will generate the next route rules.

Route rule Method Description
/product GET Retrive a collection
/product POST Create a new resource item
/product/<int:id> GET Retrieve a resource item
/product/<int:id> PATCH Update a resource item
/product/<int:id> DELETE Delete a resource item

By default, the name of the table is used to render the resource list part of the url and the name of the primary
key column for the resource identifier part. Note that the type of the column is used when possible for the route
rule variable type.

If the model class has a composite primary key, the identifier part are rendered with each column name separated
by a comma.

For example:

class OrderLine(Model):
__tablename__ = 'order_line'

order_id = Column(Integer, primary_key=True)
product_id = Column(Integer, primary_key=True)

add_resource(OrderLine, app)

The route rules will be:

/order-line
/order-line/<int:order_id>,<int:product_id>

Note that the character (_) was sustituted by a dash (-) character in the base url.

To customize the base url (resource list part) use the base_url parameter:

add_resource(app, Product, 'products')

Which renders:

/products
/products/<int:id>

By default, all endpoints are secured with require_auth(). Once again, the table name is used for the
resource parameter of require_auth(), unless the resource_name parameter is provided.

To disable this behavior pass secure=False.

Model classes with a property (column) named org_id will be considered an organization resource and will
generate an organization endpoint. For instance, supposing the model class Product has the property org_id the
generated route rules will be:

16 Chapter 4. API

Saraki Documentation, Release 0.1.0a0

/orgs/<aud:orgname>/products
/orgs/<aud:orgname>/products/<int:id>

Notice

If you pass secure=False and an organization model class, current_org and current_user won’t
be available and the generated view functions will break.

Parameters

• app – Flask or Blueprint instance.

• modelcls – SQLAlchemy model class.

• base_url – The base url for the resource.

• ident – Names of the column used to identify a resource item.

• methods – Dict object with allowd HTTP methods for item and list resources.

• secure – Boolean flag to secure a resource using require_auth.

• resource_name – resource name required in token scope to access this resource.

class saraki.endpoints.Collection
Creates a callable object to decorate collection endpoints.

View functions decorated with this decorator must return an SQLAlchemy declarative class. This decorator can
handle filtering, search, pagination, and sorting using HTTP query strings.

This is implemented as a class to extend or change the format of the query strings. Usually, you will need just
one instance of this class in the entire application.

Example:

First create a instance
collection = Collection()

@app.route('/products')
@collection()
def index():

return a SQLAlchemy declarative class
return Product

4.4 Model

Saraki implements a set of predefined entities where all the application data is stored, such as users, organizations,
roles, etc.

Under the hood, Flask-SQLAlchemy is used to manage sessions and connections to the database. A global object
database is already created for you to perform operations.

saraki.model.database
Global instance of SQLAlchemy

class saraki.model.Model(**kwargs)
Abstract class from which all your model classes should extend.

4.4. Model 17

https://flask-sqlalchemy.palletsprojects.com/en/2.x/api/#flask_sqlalchemy.SQLAlchemy

Saraki Documentation, Release 0.1.0a0

class saraki.model.Plan(**kwargs)
Available plans in your application.

id
Primary key

name
A name for the plan. For instance, Pro, Business, Personal, etc.

amount_of_members
The amount of members that an organization can have.

price
Price of the plan.

class saraki.model.User(**kwargs)
User accounts.

id
Primary key

email
Email associated with the account. Must be unique.

username
Username associated with the account. Must be unique.

canonical_username
Lowercase version of the username used for authentication.

Don’t set this column directly. This column is filled automatically when the username column is as-
signed with a value.

password
The password is hashed under the hood, so set this with the original/unhashed password directly.

active
This property defines if the user account is activated or not. To use when the user verifies its account
through an email for instance.

class saraki.model.Org(**kwargs)
Organization accounts.

This table registers all organizations being managed by the application and owned by at least one user account
registered in the Membership table.

id
Primary Key.

orgname
The organization account name.

name
The name of the organization.

user_id
The primary key of the user that created the organization account. But, this account not necessarily is the
owner of the organization account, just the user that registered the organization. See the table Member for
more information.

plan_id
Plan selected from the Plan table.

18 Chapter 4. API

Saraki Documentation, Release 0.1.0a0

class saraki.model.Membership(**kwargs)
Users accounts that are members of an Organization.

Application users who belong to an organization are considered members, including the owner of the account.
This table is a many to many relationship between the tables User and Org.

user_id
The ID of a user account in the table User.

org_id
The ID of an organization account in the table Org.

is_owner
If this is True, this member is the/an owner of this organization. One or more members can be owner at
the same time.

enabled
Enable or disable a member from an organization.

class saraki.model.Action(**kwargs)
Actions performed across the application like manage, create, read, update, delete, follow, etc.

This table stores all actions registered using require_auth().

class saraki.model.Resource(**kwargs)
Application resources.

id
Primary Key.

name
The name of the resource.

description
A useful description, please.

parent_id
Parent resource.

class saraki.model.Ability(**kwargs)
An ability represents the capacity to perform an action (create, read, update, delete) on a resource/module/service
of an application. In other words is an action/resource pair.

This table is used to define those pairs, give them a name and a useful description.

action_id
Foreign key. References to the column id of the table Action.

resource_id
Foreign key. References to the column id of the table Resource.

name
A name for the ability. For instance. Create Products.

description
A long text that describes what this ability does.

class saraki.model.Role(**kwargs)
A Role is a set of abilities that can be assigned to organization members, for example, Seller, Cashier, Driver,
Manager, etc.

This table holds all roles of all organizations accounts, determining the organization that owns the role by the
Org identifier in the column org_id.

4.4. Model 19

Saraki Documentation, Release 0.1.0a0

Since the roles of all organizations reside in this table, the column name can have repeated values. But a role
name must be unique in each organization.

id
Primary Key.

name
A name for the role, Cashier for example.

description
A long text that describes what this role does.

org_id
The id of the organization account to which this role belongs.

class saraki.model.RoleAbility(**kwargs)

class saraki.model.MemberRole(**kwargs)
All the roles that a user has in an organization.

This table have two composite foreign keys:

• (org_id, user_id) references to Membership (org_id, user_id).

• (org_id, role_id) references to Role (org_id, user_id).

Those two composite foreign keys ensure that the user to which a role is assigned indeed is a member of the
organization.

org_id
Foreign key. Must be present in the tables Membership and Role.

user_id
Foreign key with user_id from the table Membership.

role_id
Foreign key. Role.id from the table Role.

4.5 Utility

saraki.utility.import_into_sqla_object(model_instance, data)
Import a dictionary into a SQLAlchemy model instance. Only those keys in data that match a column name in
the model instance are imported, everthing else is omitted.

This function does not validate the values coming in data.

Parameters

• model_instance – A SQLAlchemy model instance.

• data – A python dictionary.

saraki.utility.export_from_sqla_object(obj, include=(), exclude=())
Converts SQLAlchemy models into python serializable objects.

This is an instance of ExportData so head on to the __call__() method to known how this work. This
instances globally removes columns named org_id.

saraki.utility.generate_schema(model_class, include=(), exclude=(), exclude_rules=None)
Inspects a SQLAlchemy model class and returns a validation schema to be used with the Cerberus library. The
schema is generated mapping column types and constraints to Cerberus rules:

20 Chapter 4. API

Saraki Documentation, Release 0.1.0a0

Cerberus
Rule

Based on

type SQLAlchemy column class used (String, Integer, etc).
readonly True if the column is primary key.
required True if Column.nullable is False or Column.default and Column.

server_default None.
unique Included only when the unique constraint is True, otherwise is omitted:

Column(unique=True)
default Not included in the output. This is handled by SQLAlchemy or by the database engine.

Parameters

• model_class – SQLAlchemy model class.

• include – List of columns to include in the output.

• exclude – List of column to exclude from the output.

• exclude_rules – Rules to be excluded from the output.

class saraki.utility.ExportData(exclude=())
Creates a callable object that convert SQLAlchemy model instances to dictionaries.

__call__(obj, include=(), exclude=())
Converts SQLAlchemy models into python serializable objects. It can take a single model or a list of
models.

By default, all columns are included in the output, unless a list of column names are provided to the
parameters include or exclude. The latter has precedence over the former. Finally, the columns that
appear in the excluded property will be excluded, regardless of the values that the parameters include
and exclude have.

If the model is not persisted in the database, the default values of the columns are used if they exist in the
class definition. From the example below, the value False will be used for the column active:

active = Column(Boolean, default=False)

Parameters

• obj – A instance or a list of SQLAlchemy model instances.

• include – tuple, list or set.

• exclude – tuple, list or set.

exclude = None
A global list of column names to exclude. This takes precedence over the parameters include and/or
exclude of this instance call.

4.6 Exceptions

exception saraki.exc.AuthenticationError

exception saraki.exc.AuthorizationError

exception saraki.exc.InvalidMemberError

4.6. Exceptions 21

Saraki Documentation, Release 0.1.0a0

exception saraki.exc.InvalidOrgError

exception saraki.exc.InvalidPasswordError

exception saraki.exc.InvalidUserError

exception saraki.exc.JWTError

exception saraki.exc.NotFoundCredentialError
Raised when a token or a username/password pair can not be found in the current HTTP request.

exception saraki.exc.ProgrammingError

exception saraki.exc.TokenNotFoundError

exception saraki.exc.ValidationError(errors)

22 Chapter 4. API

CHAPTER 5

History

5.1 0.1.0a0 (2018-09-23)

5.1.1 Bug Fixes

• Fix tests that break when run individually

• user - Use SQLAlchemy hybrid_property on User’s columns

• endpoint - Use the table name for endpoint in add_resource

• auth - Validate only Claim type view_args against token

5.1.2 Features

• Make default auth and database initialization optional

• app - Add add_resource method to Saraki and Blueprint

• endpoint

– Make collection decorator aware of organization model classes

– Add automatic API creation for organization resources

– Add add_resource to automate API endpoints creation

• utility

– Make @json support returns in the form (payload, headers)

– Support global column exclusion from response payloads.

– Use export_data method in export_from_sqla_object

– Add current_org local proxy object

– Add custom (Cerberus) validator

23

Saraki Documentation, Release 0.1.0a0

– Add json decorator

– Add export_from_sqla_object utility function

– Add validation schema generator

• refactor - Require model_class only with unique rule in Validator

• auth

– Include member privileges in access token

– Add persistence for actions and resources

– Add default scp claim value for organization owners

– Add resource/action based authorization

– Add authorization mechanism for org endpoints

– Add initial authorization mechanism

– Make iss claim optional by default

– Add authentication

• role - Add member role management endpoints

• action - Add API to retrieve Action resources

• resource - Add API to retrieve Resource resources

• testing - Add a new module that implements test helpers

• plan - Add basic plans management

• member - Add endpoints to add and list members

• org - Add org account endpoints

• model - Add export_data method to Model class

• signup - Add signup endpoint

24 Chapter 5. History

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

25

Saraki Documentation, Release 0.1.0a0

26 Chapter 6. Indices and tables

Python Module Index

s
saraki, 13
saraki.endpoints, 15
saraki.exc, 21
saraki.model, 17
saraki.utility, 20

27

Saraki Documentation, Release 0.1.0a0

28 Python Module Index

Index

Symbols
__call__() (saraki.utility.ExportData method), 21

A
Ability (class in saraki.model), 19
Action (class in saraki.model), 19
action_id (saraki.model.Ability attribute), 19
active (saraki.model.User attribute), 18
add_resource() (in module saraki.endpoints), 15
amount_of_members (saraki.model.Plan attribute), 18
AuthenticationError, 21
AuthorizationError, 21

C
canonical_username (saraki.model.User attribute), 18
Collection (class in saraki.endpoints), 17
collection() (in module saraki.endpoints), 15
current_org (in module saraki), 13
current_user (in module saraki), 13

D
description (saraki.model.Ability attribute), 19
description (saraki.model.Resource attribute), 19
description (saraki.model.Role attribute), 20

E
email (saraki.model.User attribute), 18
enabled (saraki.model.Membership attribute), 19
exclude (saraki.utility.ExportData attribute), 21
export_from_sqla_object() (in module saraki.utility), 20
ExportData (class in saraki.utility), 21

G
generate_schema() (in module saraki.utility), 20

I
id (saraki.model.Org attribute), 18
id (saraki.model.Plan attribute), 18
id (saraki.model.Resource attribute), 19

id (saraki.model.Role attribute), 20
id (saraki.model.User attribute), 18
import_into_sqla_object() (in module saraki.utility), 20
InvalidMemberError, 21
InvalidOrgError, 21
InvalidPasswordError, 22
InvalidUserError, 22
is_owner (saraki.model.Membership attribute), 19

J
json() (in module saraki.endpoints), 15
JWT_ALGORITHM (built-in variable), 11
JWT_AUTH_HEADER_PREFIX (built-in variable), 11
JWT_EXPIRATION_DELTA (built-in variable), 11
JWT_ISSUER (built-in variable), 12
JWT_LEEWAY (built-in variable), 11
JWT_REQUIRED_CLAIMS (built-in variable), 12
JWTError, 22

M
MemberRole (class in saraki.model), 20
Membership (class in saraki.model), 18
Model (class in saraki.model), 17

N
name (saraki.model.Ability attribute), 19
name (saraki.model.Org attribute), 18
name (saraki.model.Plan attribute), 18
name (saraki.model.Resource attribute), 19
name (saraki.model.Role attribute), 20
NotFoundCredentialError, 22

O
Org (class in saraki.model), 18
org_id (saraki.model.MemberRole attribute), 20
org_id (saraki.model.Membership attribute), 19
org_id (saraki.model.Role attribute), 20
orgname (saraki.model.Org attribute), 18

29

Saraki Documentation, Release 0.1.0a0

P
parent_id (saraki.model.Resource attribute), 19
password (saraki.model.User attribute), 18
Plan (class in saraki.model), 17
plan_id (saraki.model.Org attribute), 18
price (saraki.model.Plan attribute), 18
ProgrammingError, 22

R
require_auth() (in module saraki), 13
Resource (class in saraki.model), 19
resource_id (saraki.model.Ability attribute), 19
Role (class in saraki.model), 19
role_id (saraki.model.MemberRole attribute), 20
RoleAbility (class in saraki.model), 20

S
saraki (module), 13
saraki.endpoints (module), 15
saraki.exc (module), 21
saraki.model (module), 17
saraki.model.database (in module saraki.endpoints), 17
saraki.utility (module), 20
SECRET_KEY (built-in variable), 11
SERVER_NAME (built-in variable), 11
SQLALCHEMY_DATABASE_URI (built-in variable),

11

T
TokenNotFoundError, 22

U
User (class in saraki.model), 18
user_id (saraki.model.MemberRole attribute), 20
user_id (saraki.model.Membership attribute), 19
user_id (saraki.model.Org attribute), 18
username (saraki.model.User attribute), 18

V
ValidationError, 22

30 Index

	Quickstart
	A Minimal Application
	Protecting endpoints

	Authorization
	How it works
	Authorization rules
	Variable Converters
	Access token

	Configuration
	API
	The Current Account
	Authorization
	Endpoints
	Model
	Utility
	Exceptions

	History
	0.1.0a0 (2018-09-23)

	Indices and tables
	Python Module Index
	Index

